Clearconcepts

DATE:
MARKS: 180

ELECTROSTATICS

LEVEL - I

1. Two charges of $40 \mu \mathrm{C}$ and $-20 \mu \mathrm{C}$ are placed at a certain distance apart. They are touched and kept at the same distance. The ratio of the initial to the final force between them is
a) $8: 1$
b) $4: 1$
c) $1: 8$
d) $1: 1$
2. Two charges $\mathrm{q}_{1} \& \mathrm{q}_{2}$ are kept at a certain distance in air. If a dielectric (glass slab) is introduced between them, the force between the charges will
a) increase
b) remain unchanged
c) be doubled
d) decrease
3. A point charge Q is placed at the centre of a circular wire of radius R having charge q. The force of electrostatic interaction between point charge and the wire is:
a) $\frac{\mathrm{qQ}}{4 \pi \varepsilon_{0} \mathrm{R}^{2}}$
b) $\frac{\mathrm{q}^{2}}{4 \pi \varepsilon_{0} R}$
c) zero
d) none of these
4. Equal charges Q are placed at the vertices A and B of an equilateral triangle $A B C$ of side a. The magnitude of electric field at the point A is
a) $\frac{\mathrm{Q}}{2 \pi \varepsilon_{0} \mathrm{a}^{2}}$
b) $\frac{\sqrt{2} \mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{a}^{2}}$
c) $\frac{\sqrt{3} \mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{a}^{2}}$
d) $\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{a}^{2}}$
5. The electric field required to keep a water drop of mass ' m ' just to remain suspended, when charged with one electron, is
a) mg
b) $\frac{e m}{g}$
c) emg
d) $\frac{\mathrm{mg}}{\mathrm{e}}$
6. A charge $(-q)$ and another charge $(+Q)$ are kept at two points A and B respectively. Keeping the charge $(+Q)$ fixed at B, the charge $(-q)$ at A is moved to another point C such that $A B C$ forms an equilateral triangle of side l. The network done in moving the charge (q) is
a) $\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Qq}}{1}$
b) $\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Qq}}{1^{2}}$
c) $\frac{1}{4 \pi \varepsilon_{0}} \mathrm{Qql}$
d) Zero
7. The figure shows some of the electric field lines corresponding to an electric field. The figure suggests
a) $\mathrm{E}_{\mathrm{A}}>\mathrm{E}_{\mathrm{B}}>\mathrm{E}_{\mathrm{C}}$
b) $\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{B}}=\mathrm{E}_{\mathrm{C}}$
c) $\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{C}}>\mathrm{E}_{\mathrm{B}}$
d) $\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{C}}<\mathrm{E}_{\mathrm{B}}$

8. Electric lines of force about negative point charge are
a) Circular, anticlockwise
b) Radial, inward
c) Circular, clockwise
d) Radial, outward
9. Dimensions of electric flux are:
a) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]$
b) $\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-1} \mathrm{I}^{-1}\right]$
c) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1} \mathrm{I}^{-1}\right]$
d) $\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]$
10. The statement of Gauss' theorem is. The total \qquad over a closed surface of any shape drawn in an electric field is equal to $1 / \varepsilon$ times the algebraic sum of the charges enclosed by the surface:
a) T.N.E.I.
b) electric induction
c) electric flux.
d) none of the above.
11. Surface charge density of a metal sphere of radius R is σ. Intensity of the electric field at a distance $2 R$ from the surface of the sphere is:
a) $\frac{\sigma}{4 \varepsilon}$
b) $\frac{\sigma}{3 \varepsilon}$
c) $\frac{\sigma}{2 \varepsilon}$
d) $\frac{\sigma}{9 \varepsilon}$
12. The dimensional equation of capacity is:
a) $\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]$
b) $\left[M^{2} L^{1} T^{2}\right]$
c) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{3} \mathrm{I}^{-2}\right]$
d) $\quad\left[\mathrm{M}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{5} \mathrm{I}^{1}\right]$
13. Two condensers of capacity X and Y are connected in parallel. If charge Q is given to the assembly, the charge gets shared. Ratio of charge on X to that on Y is:
a) Y / X
b) XY
c) X / Y
d) $1 / \mathrm{XY}$.
14. Two capacitors of capacity C_{1} and C_{2} are connected in series and potential difference V is applied across it. The potential difference across C_{1} will be:
a) $\mathrm{V} \times\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$
b) $\left[\mathrm{V} \times\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)\right] / \mathrm{C}_{1}$
c) $\left(\mathrm{V} \times \mathrm{C}_{2}\right) /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
d) $\left(\mathrm{V} \times \mathrm{C}_{1}\right) /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
15. What fraction of the energy drawn from the charging battery is stored in the capacitor?
a) 100%
b) 75%
c) 50%
d) 25%
16. A parallel plate air capacitor has capacity 'C' farad, potential 'V' volt and energy 'E' joule. When the gap between the plates is completely filled with dielectric
a) both V and E increase
b) both V and E decrease
c) V decreases, E increases
d) V increases, E decrease
